Character Tables

Decomposition of reducible representations into irreducible representations

General form of Character Tables:

- (a) Gives the Schonflies symbol for the point group.
- (b) Lists the symmetry operations (by class) for that group.
- (c) Lists the characters, for all irreducible representations for each class of operation.
- (d) Shows the irreducible representation for which the six vectors T_x , T_y , T_z , and R_x , R_y , R_z , provide the basis.
- (e) Shows how functions that are binary combinations of x,y,z (xy or z²) provide bases for certain irreducible representation.(Raman d orbitals)
- (f) List conventional symbols for irreducible representations: **Mulliken** symbols

Mulliken symbols: Labelling

All one dimensional irreducible representations are labelled A or B.

All two dimensional irreducible representations are labelled **E**. (Not to be confused with Identity element)

All three dimensional representations are labelled **T**.

For *linear* point groups one dimensional representations are given the symbol Σ with two and three dimensional representations being Π and Δ .

Mulliken symbols: Labelling

1)

A one dimensional irreducible representation is labelled \mathbf{A} if it is symmetric with respect to rotation about the highest order axis C_n .

(Symmetric means that $\chi = +1$ for the operation.) If it is anti-symmetric with respect to the operation $\chi = -1$ and it is labelled **B**.

2)

A subscript 1 is given if the irreducible representation is symmetric with respect to rotation about a C_2 axis perpendicular to C_n or (in the absence of such an axis) to reflection in a σ_v plane. An anti-symmetric representation is given the subscript 2.

For linear point groups symmetry with respect to s is indicated by a superscript + (symmetric) or - (anti-symmetric)

Mulliken symbols: Labelling

3)

Subscripts \mathbf{g} (gerade) and \mathbf{u} (ungerade) are given to irreducible representations That are symmetric and anti-symmetric respectively, with respect to inversion at a centre of symmetry.

4)

Superscripts ⁶ and ⁶⁶ are given to irreducible representations that are symmetric and anti-symmetric respectively with respect 0 reflection in a σ_h plane.

Note: Points 1) and 2) apply to one-dimensional representations only. Points 3) and 4) apply equally to one-, two-, and three- dimensional representations.

Character Table (C_{2v})

"A" means symmetric with regard to rotation about the principle axis. "B" means anti-symmetric with regard to rotation about the principle axis. Subscript numbers are used to differentiate symmetry labels, if necessary. "1" indicates that the operation leaves the function unchanged: it is called "symmetric". "-1" indicates that the operation reverses the function: it is called "anti-symmetric".

Character Table (C_{2v})

					Symmetry o	f Functions
					▲	\mathbf{A}
C _{2V}	E	C ₂	$\sigma_{v}(xz)$	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	ХZ
B ₂	1	-1	-1	1	y, R _x	yz

The functions to the right are called *basis functions*. They represent mathematical functions such as orbitals, rotations, etc.

If a p_x orbital on the central atom of a molecule with C_{2v} symmetry is rotated about the C_2 axis, the orbital is reversed, so the character will be -1.

If a p_x orbital on the central atom of a molecule with C_{2v} symmetry is rotated about the C_2 axis, the orbital is reversed, so the character will be -1.

C _{2V}	E	C ₂	$\sigma_{v}(XZ)$	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	Rz	ху
B ₁	1	-1	1	-1	x, R _y	ХZ
B ₂	1	-1	-1	1	y, R _x	уz

If a p_x orbital on the central atom of a molecule with C_{2v} symmetry is reflected in the yz plane, the orbital is also reversed, and the character will be -1.

If a p_x orbital on the central atom of a molecule with C_{2v} symmetry is reflected in the yz plane, the orbital is also reversed, and the character will be -1.

C _{2V}	E	C ₂	$\sigma_{v}(XZ)$	σ' _v (yz)		
A ₁	1	1	1	1	z	x ² ,y ² ,z ²
A ₂	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	ХZ
B ₂	1	-1	-1	1	y, R _x	уz

If a p_x orbital on the central atom of a molecule with C_{2v} symmetry is reflected in the xz plane, the orbital is unchanged, so the character is +1.

Character Table Representations

- 1. Characters of +1 indicate that the basis function is unchanged by the symmetry operation.
- 2. Characters of -1 indicate that the basis function is reversed by the symmetry operation.
- 3. Characters of 0 indicate that the basis function undergoes a more complicated change.

Character Table Representations

- 1. An *A* representation indicates that the functions are symmetric with respect to rotation about the principal axis of rotation.
- 2. *B* representations are asymmetric with respect to rotation about the principal axis.
- 3. *E* representations are doubly degenerate.
- 4. *T* representations are triply degenerate.
- 5. Subscrips *u* and *g* indicate asymmetric (*ungerade*) or symmetric (*gerade*) with respect to a center of inversion.

Symmetry of orbitals and functions

O _h	Е	8 C ₃	6 C ₂	6 C ₄	3 C ₂ (C ₄ ²)	i	6 S ₄	8 S ₆	$3 \sigma_h$	6 σ _d		
A _{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
Eg	2	-1	0	0	2	2	0	-1	2	0		(2z ² - x ² - y ² , x ² - y ²)
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R _x , R _y , R _z)	
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T _{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

More notes about symmetry labels and characters:

-"T" indicates that the representation is triply-degenerate – this means that the functions grouped in parentheses must be treated as a threesome and can not be considered individually.

-The subscripts g (gerade) and u (ungerade) in the symmetry representation label indicates "symmetric" or "anti-symmetric" with respect to the inversion center, *i*.

Conversion of Reducible Representations into Irreducible Representations

Generating Reducible Representations

Summarising we get that Γ_{3n} for this molecule is:

To reduce this we need the character table for the point groups

C _{2v}	E	C ₂	σ _(xz)	σ _(yz)		
A ₁	+1	+1	+1	+1	T _z	x ² , y ² , z ²
A ₂	+1	+1	-1	-1	R _z	ху
B ₁	+1	-1	+1	-1	T_x, R_x	XZ
B ₂	+1	-1	-1	+1	T_{y} , R_{y}	yz

Reducing Reducible Representations

We need to use the reduction formula:

$$a_{p} = \left(\frac{1}{g}\right) \sum_{R} n_{R} \cdot \chi(R) \cdot \chi_{p}(R)$$

Where a_p is the number of times the irreducible representation, p, occurs in any reducible representation.

 \boldsymbol{g} is the number of symmetry operations in the group

 $\chi(R)$ is character of the **reducible** representation

 $\chi_p(\mathbf{R})$ is character of the **irreducible** representation

 n_R is the number of operations in the class

 $a_{A_1} = (1/4)[(1x9x1) + (1x-1x1) + (1x1x1) + (1x3x1)] = (12/4) = 3$

$$a_{p} = \left(\frac{1}{g}\right) \sum_{R} n_{R} \cdot \chi(R) \cdot \chi_{p}(R) \qquad \frac{C_{2v}}{\Gamma_{3n}} = C_{2} \quad \sigma_{(xz)} \quad \sigma_{(yz)}$$

$$\begin{aligned} \mathbf{a}_{A_1} &= (1/4)[\ (\ 1\mathbf{x}9\mathbf{x}1) + (1\mathbf{x}-1\mathbf{x}1) + (1\mathbf{x}1\mathbf{x}1) + (1\mathbf{x}3\mathbf{x}1)] = (12/4) = 3 \\ \mathbf{a}_{A_2} &= (1/4)[\ (\ 1\mathbf{x}9\mathbf{x}1) + (1\mathbf{x}-1\mathbf{x}1) + (1\mathbf{x}1\mathbf{x}-1) + (1\mathbf{x}3\mathbf{x}-1)] = (4/4) = 1 \\ \mathbf{a}_{B_1} &= (1/4)[\ (\ 1\mathbf{x}9\mathbf{x}1) + (1\mathbf{x}-1\mathbf{x}-1) + (1\mathbf{x}1\mathbf{x}1) + (1\mathbf{x}3\mathbf{x}-1)] = (8/4) = 2 \\ \mathbf{a}_{B_2} &= (1/4)[\ (\ 1\mathbf{x}9\mathbf{x}1) + (1\mathbf{x}-1\mathbf{x}-1) + (1\mathbf{x}1\mathbf{x}-1) + (1\mathbf{x}3\mathbf{x}1)] = (12/4) = 3 \\ \hline \Gamma_{3n} &= 3\mathbf{A}_1 + \mathbf{A}_2 + 2\mathbf{B}_1 + 3\mathbf{B}_2 \end{aligned}$$